f07 — Linear Equations (LAPACK) f07quc

NAG C Library Function Document

nag_zspcon (f07quc)

1 Purpose

nag_zspcon (f07quc) estimates the condition number of a complex symmetric matrix A, where A has been
factorized by nag_zsptrf (f07qrc), using packed storage.

2 Specification

void nag_zspcon (Nag_OrderType order, Nag_UploType uplo, Integer n,
const Complex ap[], const Integer ipiv[], double anorm, double *rcond,
NagError xfail)

3 Description

nag_zspcon (f07quc) estimates the condition number (in the 1-norm) of a complex symmetric matrix A:
mr(A) = AL A7,

Since A is symmetric, £1(A) = ro(A) = [|A]| |4 |-

Because «(A) is infinite if A is singular, the function actually returns an estimate of the reciprocal of

K1(A).

The function should be preceded by a call to nag_zsp norm (fl6ugc) to compute ||Al|, and a call to
nag_zsptrf (f07qrc) to compute the Bunch—Kaufman factorization of A. The function then uses Higham’s
implementation of Hager’s method (see Higham (1988)) to estimate ||A~"|,.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.
2: uplo — Nag_ UploType Input
On entry: indicates how A has been factorized as follows:
if uplo = Nag_Upper, A = PUDU TPT where U is upper triangular;
if uplo = Nag_Lower, A = PLDL" P", where L is lower triangular.
Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] f07quc.1

f07quc NAG C Library Manual

4: ap[dim] — const Complex Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: details of the factorization of A stored in packed form, as returned by nag_zsptrf (f07qrc).

5: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On entry: details of the interchanges and the block structure of D, as returned by nag zsptrf
(f07qrc).

6: anorm — double Input
On entry: the 1-norm of the original matrix A, which may be computed by calling nag_zsp norm
(fl6ugc). anorm must be computed either before calling nag_zsptrf (f07qrc) or else from a copy of
the original matrix A.

Constraint: anorm > 0.0.

7: rcond — double * Output
On exit: an estimate of the reciprocal of the condition number of A. rcond is set to zero if exact
singularity is detected or the estimate underflows. If rcond is less than machine precision, A is
singular to working precision.

8: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).

Constraint: n > 0.

NE_REAL

On entry, anorm = (value).
Constraint: anorm > 0.0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

7

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

Accuracy

The computed estimate rcond is never less than the true value p, and in practice is nearly always less than
10p, although examples can be constructed where rcond is much larger.

07quc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07quc

8 Further Comments

A call to nag_zspcon (f07quc) involves solving a number of systems of linear equations of the form

Az = b; the number is usually 5 and never more than 11. Each solution involves approximately 8n” real
floating-point operations but takes considerably longer than a call to nag_zsptrs (f07qsc) with 1 right-hand
side, because extra care is taken to avoid overflow when A is approximately singular.

The real analogue of this function is nag_dspcon (f07pgc).

9 Example

To estimate the condition number in the 1-norm (or infinity-norm) of the matrix A, where

—0.39 - 0.71% 5.14 - 0.64¢ —7.86 —2.967 3.80 4+ 0.92¢
5.14 — 0.64¢ 8.86 +1.81% —3.52+0.58% 5.32 —1.5%
—7.86 —2.967 —3.5240.58: —2.83 —0.03: —1.54 —2.86:
3.80 4+ 0.92¢ 532—-1.59 —-154-2861 —0.5640.12:

A:

Here A is symmetric, stored in packed form, and must first be factorized by nag_zsptrf (f07qrc). The true
condition number in the 1-norm is 32.92.

9.1 Program Text

/* nag_zspcon (f07quc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagfl6.h>
#include <nagx02.h>

int main(void)

{
/* Scalars */
double anorm, rcond;
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType wuplo_enum;
Nag_OrderType order;

/* Arrays */
Integer *ipiv=0;
char uplo([2];
Complex *ap=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) aplJd*(J-1)/2 + I - 1]

#define A _LOWER(I,J) apl[(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT FAIL(fail);
Vprintf ("f07quc Example Program Results\n\n");

/* Skip heading in data file #*/

[NP3645/7] 07quc.3

f07quc NAG C Library Manual

Vscanf ("s*x[*\n] ");
Vscanf ("$1d%*[*\n] ", &n);
ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||
! (ap = NAG_ALLOC(ap_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file x/
Vscanf (" ' %l1ls ’'%*[*\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A_UPPER(i,]j).re, &A_UPPER(i,])

¥
Vscanf ("sx["\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re, &A_LOWER(i,j)
b
Vscanf ("s*[*\n] ");
}

/* Compute norm of A =*/
flougc(order, Nag_OneNorm, uplo_enum, n, ap, &anorm, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from floeugc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* Factorize A */
fO07qgrc(order, uplo_enum, n, ap, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07grc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Estimate condition number =*/
fO07quc(order, uplo_enum, n, ap, ipiv, anorm, &rcond, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO07quc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3

if (rcond >= X02AJC)
Vprintf ("Estimate of condition number =%10.2e\n\n", 1.0/rcond) ;
else

{

f07quc.4

.im) ;

.im) ;

[NP3645/7]

f07 — Linear Equations (LAPACK)

Vprintf ("A is singular to working precision\n");
¥
END:
if (ipiv) NAG_FREE(ipiv);
if (ap) NAG_FREE (ap);
return exit_status;

}

9.2 Program Data

fO07quc Example Program Data

4
IL’
(-0.39,-0.71)
(5.14,-0.64) (8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
(3.80, 0.92) (5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12)

9.3 Program Results

fO07quc Example Program Results

Estimate of condition number = 2.06e+01

f07quc

:Value of N
:Value of UPLO

:End of matrix A

[NP3645/7]

f07quc.5 (last)

	f07quc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	ipiv
	anorm
	rcond
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_REAL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

